
Preprint
UCRL-JC-140549

Component Technology
for High-Performance
Scientific Simulation
Software

T. Epperly, S. Kohn and G. Kumfet?

This article was submitted to
International Federation for Information Processing, Ottawa,
Ontario, Canada, October 2-4, 2000

US. Department of Energy

Laboratory

November 9,2000

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (423) 576-8401

http: / /apollo.osti.gov/bridge/

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161
http:/ /www.ntis.gov/

OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http:/ /www.llnl.gov/ tid/Library.html

http://www.ntis.gov
http://www.llnl.gov

DISCUSSION

Speaker: Scott Kohn
Thierry Priol : I do not understand why the data distribution specification is
not exposed in the IDL associated with a parallel component.

Scott Kohn : One of the goals of our work is to support the redistribution of
very complicated scientific data objects, such as unstructured meshes, hierar-
chical adaptive mesh refinement structures, various matrix representations, and
so on. We are not planning to build data distribution specifications into the
IDL because, at least at this time, we do not understand how to represent these
diverse data decompositions in a static IDL description. To our knowledge, the
only work in this area has focused on array structures. Another issue is that
the IDL description is static, whereas data decompositions often change during
the course of a simulation. We plan to concentrate on run-time descriptions
of data objects. For example, a distributed parallel object may be required to
support one of a set of data distribution interfaces through which the object
describes its data distribution state. We feel this approach is more appropri-
ate for sophisticated data decompositions that change during the course of a
computation.

Michael Thun6 : With regard to your conclusion, one could ask: Can we do
without component technology? What would be the alternative?

Scott Kohn : I think some form of component technology will be necessary,
whether it is scripting or some other style of integration approach. I am simply
not sure that our particular design choices are the correct ones. For exam-
ple, how important is language interoperability? Is it sufficient to support one
scripting language and one compiled language? If language interoperability is
important, should we use an IDL approach? Should the IDL express paralleliza-
tion and redistribution for complex data objects? I believe that there is still a
lot of exploration and research to be done by this community.

Richard Fateman : Regarding alternatives to component technology: Mono-
lithic systems such as Lisp machines (built at various times by Xerox, Texas
Instruments, Symbolics, and LMI) provided access to all aspects of a comput-
ing environment: operating system, networking, compilers, memory manage-
ment, object representation, visualization. There are major advantages to such
an approach as shown by the impressive productivity of these systems when
used by skilled programmers. Inadequate languages force system builders to
deal with inter-language communication and many associated complexities-
typically poorly as when error indicators are unchecked at interfaces, memory
management is inconsistent, and data must be repeatedly rearranged and refor-
matted.

Scott Kohn : I agree that choice of language and the programming environ-
ment can significantly impact productivity. I question whether the scientific

1

software community would adopt a single environment or a single language. In
some sense, limiting ourselves to only one language would be a bad choice in
that it would limit exploration. We use many different languages because eath
language offers different advantages. Fortran, in spite of all of its limitations,
is a very good language for array manipulation. C++ offers object-oriented ca-
pabilities at a reasonable cost in terms of performance. Java is a better object-
oriented language, but performance is not as good as C++. Python provides
scripting capabilities. I don’t see any single language as an overall solution.
Component technology is a very pragmatic solution to the integration of diverse
languages and environments,

John R. Rice : Suppose everyone agreed to use a single language forever
more. How would this eliminate the need for a component technology? I think
it would still be essential.

Scott Kohn : I agree, although I think the need for component technology
would be diminished. For example, performance considerations aside, Java and
Python are very good programming languages that share many characteristics
of a good component system: physical deployment and packaging standards dy-
namic loading, good support for abstraction, interface metadata, and common
object behaviors. In the scientific domain, I think components also offer ad-
vantages for distributed computing and parallel data communication between
components. To be pragmatic, however, technology is always changing, and the
community would not want to choose a single language forever more. We need
an integration approach such as components that will adapt to the changing
technology landscape.

2

COMPONENT TECHNOLOGY FOR

SIMULATION SOFTWARE*
HIGH-PERFORMANCE SCIENTIFIC

Tom Epperly, Scott Kohn, and Gary Kumfert
Center for Applied Scient@ Computing
Lawrence Livermore National Laboratory
Livemzore, CA, USA
tepperlyQ Ilnl.gov
s ko hn Q I I nl .gov
kumfert@llnl.gov

Abstract We are developing scientific software component technology to manage the
complexity of modem, parallel simulation software and increase the interop-
erability and re-use of scientific software packages. In this paper, we describe
a language interoperability tool named Babel that enables the creation and dis-
tribution of language-independent software libraries using interface definition
language (IDL) techniques. We have created a scientific IDL that focuses on the
unique interface description needs of scientific codes, such as complex numbers,
dense multidimensional arrays, complicated data types, and parallelism. Prelim-
inary results indicate that in addition to language interoperability, this approach
provides useful tools for thinking about the design of modem object-oriented
scientific software libraries. Finally, we also describe a web-based component
repository called Alexandria that facilitates the distribution, documentation, and
re-use of scientific components and libraries.

Keywords: component technology, language interoperability, software repository, parallel
high-performance scientific software

*Work performed under the auspices of the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48. Work funded by LLNL LDRD
grant 00-SI-002 and the ACTS program of the DOE Office of Science.

1

http://Ilnl.gov
mailto:kumfert@llnl.gov

2

1. MOTIVATION
Numerical simulations play a vital role as a basic research tool for under-

stating fundamental physical processes. As simulations become increasingly
sophisticated and complex, no single person-or even single institution-can
develop scientific software in isolation. Development teams rarely possess suf-
ficient resources and scientific expertise in all required domains to successfully
create a complex application from scratch. Instead, physicists, chemists, math-
ematicians, and computer scientists concentrate on developing software in their
domain of expertise. Computational scientists create simulations by combining
these individual software pieces.

In collaboration with the Common Component Architecture forum [13, we
are developing software component technology for high-performance parallel
scientific computing. The goal of this effort is to improve the software de-
velopment processes of scientific codes by using proven techniques and tech-
nology from industry. Component technology addresses technological barriers
to software re-use and integration, such as incompatibilities in programming
languages, interface descriptions, or physical deployment. By removing such
barriers, component approaches will allow computational scientists to concen-
trate on building more sophisticated numerical simulations and make scientific
progress instead of wasting effort integrating incompatible software.

In this paper, we describe our recent research and development efforts in two
areas of component technology: language interoperability and a component
repository. As part of our language interoperability efforts, we have developed
a tool called Babel to enable the creation and distribution of language indepen-
dent software libraries. To use Babel, library developers describe their soft-
ware interfaces in a special Scientific Interface Definition Language (SIDL).
Babel uses this SIDL interface description to automatically generate "glue
code" that enables the software library to be called from any supported lan-
guage. We have also designed and implemented a prototype web-based repos-
itory called Alexandria to encourage the distribution and reuse of scientific
computing software components and libraries. Alexandria provides a conve-
nient web-based delivery system and thus lowers the barrier to adopting com-
ponent technology.

This paper is organized as follows. Section 2 surveys component technol-
ogy approaches for scientific computing and discusses related work. Section 3
discusses our language interoperability approach, modifications necessary for
the scientific domain, and the Babel tool. Section 4 introduces the Alexandria
web-based component repository and its implementation architecture. Sec-
tion 5 concludes with a discussion of how these component tools have been
used in the context of a high-performance scientific software library.

Component Technology for Scient@ Software 3

2. SCIENTIFIC COMPONENT TECHNOLOGY
Component technology is an extension of object-oriented software technol-

ogy that focuses on the issues of software interoperability and re-use. There is
no universally accepted definition of the term component by the software com-
munity [151. In this paper, we loosely define a component as a software entity
that adheres to certain standard interoperability behaviors that facilitate re-use
(see below). These standard interoperability behaviors are defined by a com-
ponent architecture. To use a hardware analogy, a component architecture is
like a hardware back-plane that defines standard signal pin-outs and standard
bus negotiation protocols, and components are interoperable cards that plug
into that back-plane.

Component technology is different from object-oriented approaches, soft-
ware modules, scripting [2, 31, or software frameworks [4, 5, 6, 91. These
techniques do not typically address interoperability concerns. However, com-
ponent approaches do make use of these related technologies. For example,
a software framework may be created within a component architecture to ad-
dress a particular application domain. Scripting languages may be used as an
integration language to connect existing software components.

Industry has created component technology to address issues of interoper-
ability due to different programming languages, the complexity of applications
developed using third-party software, and the incremental evolution of large
legacy software. There are three common component technology standards in
the business community: COM [8], JavaBeans [14], and CORBA [ll]. COM
(Component Object Model) is Microsoft’s component standard that forms the
basis for interoperability among all Windows-based applications. Microsoft
recently introduced a new component initiative called .NET [101 that com-
bines ideas from COM and Java and will likely be the future of Microsoft
technology. Sun Microsystems has developed JavaBeans and Enterprise Jav-
aBeans [13] based on their Java programming language. CORBA (Com-
mon Object Request Broker Architecture) is a cross-platform distributed ob-
ject specification that supports the interaction of complex objects written in
different languages distributed across a network of computers running differ-
ent operating systems.

Component technologies such as CORBA, COM, and JavaBeans have been
very successful in industry; unfortunately, they are designed for the business
environment and do not address many of the issues associated with large-scale
parallel scientific computing. For example, industry approaches do not address
data distribution support for massively parallel SPMD components.

We believe that a successful component technology for scientific simula-
tion must address four issues: language interoperability, common component
behavior, physical deployment standards, and support for distributed parallel

4

communication. In the following, we review related work in the scientific com-
munity building towards parallel component technology.

3. LANGUAGE INTEROPERABILITY TECHNOLOGY
Computational scientists developing large simulation codes often face dif-

ficulties due to language incompatibilities among various software libraries.
Scientific software libraries are written in a variety of programming languages,
including Fortran 77 and 90, C, C++, or a scripting language such as Python.
Language differences often force software developers to generate mediating
"glue" code by hand. In the worst case, computational scientists may need
to re-write a particular library from scratch or not use it at all. For maximum
portability across different languages, library developers sometimes implement
their software in C; however, this approach either ignores advanced software
techniques such as object-oriented development or forces library developers to
generate and maintain low-level object-oriented support code by hand.

We have developed a tool called Babel that addresses language interoper-
ability and re-use for high-performance parallel scientific software. Its purpose
is to enable the creation and distribution of language independent software li-
braries. In the following sections, we describe our interoperability approach,
modifications necessary for the scientific domain, and the Babel tool architec-
ture.

3.1. SCIENTIFIC IDL
Babel addresses the language interoperability problem using Interface Def-

inition Language (IDL) techniques. An IDL is a special language used to de-
scribe the calling interface (but not the implementation) of a particular soft-
ware library. IDL tools use this interface description to generate "glue code"
that allows the software library to be called from any supported language. IDL
approaches are common in industry component architectures such as CORBA
or COM. However, these IDLs are primarily targeted for business applications.
We have designed a Scientific Interface Definition Language (SIDL) that ad-
dresses the particular needs of parallel scientific computing. SIDL supports
complex numbers and dynamic multi-dimensional arrays as well as paralleliza-
tion attributes and communication directives that are required for general par-
allel distributed data structures. SIDL also provides other features that are
generally useful but not necessarily related to scientific computing, such as an
object-oriented inheritance model similar to Java, name space management,
and interface versioning.

Component Technology for Scientific Software 5

3.2. BABEL TOOL ARCHITECTURE
The Babel tool suite consists of a number of separate pieces: a SIDL parser,

a code generator, a small run-time support library, and a software repository.
Currently, Babel supports Fortran 77, C , and C++; we plan to develop support
for Java, Python, Fortran 90, and MATLAB in the following year.

The Babel parser, which is available either at the command-line or through
a web interface, reads SIDL interface specifications and generates an inter-
mediate XML representation. XML is a useful intermediate language since
it is amenable to manipulation by tools such as a repository or a GUI devel-
opment environment. XML interface descriptions are stored locally or in a
shared web-based software repository called Alexandria. The vision is that a
scientist downloading a particular software library from the repository will re-
ceive not only that library but also the required language bindings generated
automatically by the Babel tools.

The Babel code generator reads SIDL XML descriptions and automatically
generates glue code for a particular software library. This glue code mediates
differences among calling languages and supports efficient inter-language calls
within the same memory address space. The internal object representation used
by the code generator is similar to that used by COM or CORBA’s Portable
Object Adaptor or by scientific libraries such as PETSc. The intermediate
representation is essentially a table of function pointers, one for each method
in an object’s interface, along with other information such as internal object
state data and Babel data structures. The code generators generate stub and
skeleton code that translate between the calling conventions of a particular
language and the intermediate representation.

4. THE ALEXANDRIA REPOSITORY
The Alexandria repository was designed and built to facilitate the adoption

of component technology for high-performance scientific simulation software.
Our goal was to provide a network service where component developers can
publish their software and interface definitions and where application develop-
ers can find and download components and the language bindings needed to
provide needed features. The system was intended to have a user interface to
support human and machine clients.

We chose to implement a web application (i.e., a web server with dynamic
content managed by a program) to achieve these goals. A web application can
provide a sophisticated and friendly user interface designed for human clients
and a simple, feature-rich interface for machine clients. By using web tech-
nologies, we make the repository’s services available to the largest possible
network audience. Machine clients can use standard network libraries to access
the repository. Other network approaches would require installation of special

6

version hypre 1.0;

/**

*/
* A SIDL type description for the hypre library.

package hypre i

/**

*/
* <code>Vector</code> represents a mathematical vector.

interface Vector C
void clear 0 ;
void copy(in Vector x);
Vector clone 0 ;
void scale(in double a);
double dot(in Vector x) ;
void axpy(in double a, in Vector x);

1

/**

*/
* An <code>Operator</code> maps one vector into another vector.

interface Operator C

3
void apply(in Vector x, out Vector y);

/**

*/
* This interface represents the class of linear mappings.

interface Linearoperator extends Operator {
1

/**

*/
* <code>StructVector</code> is a vector for structured grids.

class Structvector implements-all Vector C

1
array<int> getGhostCellWidth0;

/**

*/
* The structured matrix cla.ss implements all operator functions.

class StructMatrix implements-all Operator i
// functions used to build a structured matrix omitted

1
1

Figure 1 Portions of the hypre interface specification written in SIDL.

Coniponent Technology for ScientiJic Software 7

Browser WWW server SQL Database

Figure 2 Alexandria architecture

purpose clients or more elaborate machine clients thereby decreasing the po-
tential audience for the service. The HTTP protocol provides all the transaction
types necessary for the repository: uploading files and other information from
a user inteiface form and downloading content. The transactional nature of the
WWW makes the user interface less interactive than a native application, but
the benefits of the web interface seem to outweigh this deficiency.

As shown in Figure 2, Alexandria uses a three-tiered architecture: a web
browser based user interface, a web server with Java servlets[7] and JavaServer
Pages[l2], and a JDBC[lG] connection to an SQL backend. The web server
delegates HTTP messages for certain URLs to Java servlets, and the servlet
provides the content or error response. A servlet is a Java class that imple-
ments a standard interface or overrides methods inherited from a standard base
class. The servlet can use all the features of the Java platform in generating
its response. JavaServer Pages is a convenient, dynamic way to generate a
servlet which usually combines HTML with embedded Java code to provide
the dynamic content.

The web server provides an access control infrastructure to provide different
levels of access to the repository. There is also a servlet interface to the Babel
IDL processor, so clients can get language bindings for a particular package
without having to download and install Babel.

The Alexandria repository is a web application to provide human and auto-
mated clients the information they need to find and use software components
and libraries for scientific computing. It is an enabling technology that makes
it easier to distribute and use software components. For the human client,
Alexandria provides a hierarchically organized collection of software pack-
ages uploaded by component developers, a fuzzy search capability, an interface
definition browser, and a web user interface to the Babel language interoper-
ability tool. For automated clients, Alexandria provides a repository of XML
interface definitions and will hold a repository of shared libraries which imple-
ment particular interfaces to enable dynamic graphical application builders.

8

People running Babel on their desktop can connect to Alexandria and ic-
cess it’s repository of XML type information. Users with sufficient access
can translate the IDL file into an equivalent XML representation and upload
the XML representation to the repository. Once it is in the repository, any-
one running Babel can use the XML information from Alexandria rather than
having to explicitly download all the needed IDL files. In addition, the web
server provides high quality interface documentation to web browser by ap-
plying XSLT, a evolving standard for translating XML into HTML or other
markup languages.

Alexandria is designed to have multiple versions of an interface each iden-
tified by a unique version number. When clients request an interface, they can
either provide both the name and version number or just the name in which
case they get the version with the high version number.

5. CONCLUSIONS
In collaboration with members of the H Y P E development team, we have

integrated some of the Babel language interoperability technology into the
HYPRE library. HYPRE is a suite of parallel scalable linear solvers and pre-
conditioners implemented in C and MPI. There were four primary goals of
this collaboration. First, the Babel team wanted to demonstrate the technol-
ogy and get feedback from library developers. Second, the HYPRE project
needed automatically generated Fortran bindings that would track changes in
the library. Previously, a number of different Fortran bindings were developed
by various users but fell into obsolescence with new changes to the HYPRE
library. Third, the HYPRE team wanted to explore new design options using
object-oriented and component-based software techniques, but the team had
no desire to generate and support the necessary object-oriented infrastructure
by hand. Finally, HYPRE developers wanted to integrate software developed
by other groups who had written code in C++ and Fortran.

The project began by identifying key parts of HYPRE and developing an
object-oriented design in SIDL for the primary H Y P E objects. For the most
part, existing HYPRE implementations were wrapped using glue code gen-
erated by the Babel tools. In spite of this additional intermediate glue code,
parallel runs with both Fortran and C drivers indicate that Babel overheads are
too small to measure accurately.

HYPRE developers identified a number of advantages to using Babel tech-
niques for a scientific software library in addition to the obvious advantage
of language interoperability. Developers found that SIDL was a convenient
specification description language for the design of scientific libraries because
it eliminated unnecessary implementation details and forced them to focus on
the object-oriented design of the library. They felt that the language was rel-

Component Technology fo r Scientgc SoftLvare 9

atively easy to master, although some were new to object-oriented design-and
object-oriented languages. Furthermore, HYPRE developers noticed that they
could eliminate redundant code by taking advantage of polymorphism. For
example, the previous HYPRE library contained a four different PCG (Pre-
conditioned Conjugate Gradient) routines, each written for a particular type of
preconditioner data structure. Through the use of polymorphism enabled by
Babel, they were able to reduce the number of PCG routines to one. Finally,
the HYPRE developers were able to exploit object-oriented design in C, which
has no object-oriented support, using the automatically generated Babel code.

Acknowledgments
We would like to thank Andrew Cleary, Jeff Painter, and Cal Ribbens for integrating the

Babel language interoperability technology into the h y p e library and for their many useful sug-
gestions. We would also like to thank members of the Common Component Architecture forum
for numerous in-depth conversations about component technology for scientific computing.

References

[l] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L McInnes,
S. Parker, and B. Smolinski. Toward a common component architecture
for high performance scientific computing. In Proceedings the Eighth
International Symposium on High Peij%rmance Distributed Computing,
1999. See http://z.ca.sandia.gov/Ncca-forum.

[2] David Beazley. SWIG Users Manual. See http : //www . swig. org.
[3] David M. Beazley and Peter S. Lomdahl. Building flexible large-scale

scientific computing applications with scripting languages. In The 8th
SIAM Conference on Parallel Processing for Scientific Computing, Min-
neapolis, MN, March 1997.

Overture: An
object-oriented framework for solving partial differential equations on
overlapping grids. In Proceedings of the First Workshop on Object Ori-
ented Methods for Inter-operable ScientiJic and Engineering Computing,
1998. Seehttp://www.llnl.gov/CASC/Overture.

[5] Kent G. Budge and James S. Peery. Experiences developing ALEGRA:
A C++ coupled physics framework. In Proceedings of the First Workshop
on Object Oriented Methods for Inter-operable ScientiJic and Engineer-
ing Computing, 1998.

[6] Julian Cummings, James Crotinger, Scott Haney, William Humphrey,
Steve Karmesin, John Reynders, Stephen Smith, and Timothy Williams.
Rapid application development and enhanced code interoperability us-
ing the POOMA framework. In Proceedings of the First Workshop on

[4] David Brown, William Henshaw, and Daniel Quinlan.

http://z.ca.sandia.gov/Ncca-forum

10

Object Oriented Methods for Inter-operable Scientific and Engineerifig
Computing, 1998. See h t t p : //www . acl . lanl . gov/pooma.

[7] J.D. Davidson and D. Coward. Java Sewlet Specifica-
tion, v2.2. Sun Microsystems, Inc., 901 San Antonio Road,
Palo Alto, CA 94303, USA, December 1999. Available at
h t t p : / / j a v a . sun. com/products/servlet/ .

[8] Guy Eddon and Henry Eddon. Inside Distributed COM. Microsoft Press,
Redmond, WA, 1998.

[9] Richard Hornung and Scott Kohn. The use of object-oriented de-
sign patterns in the SAMRAI structured AMR framework. In Pro-
ceedings of the First Workshop on Object Oriented Methods for
Inter-operable Scientijic and Engineering Computing, 1998. See
http://www.llnl.gov/CASC/SAMRAI.

[101 Microsoft Corporation. Microsoft .NET Platform. Available at
http://www.microsoft . com/net.

[1 11 Object Management Group. The Common Object Request Broker: Archi-
tecture and Specijication. Available at h t t p : //www . omg . org/corba.

[12) E. Peleg&Llopart and L. Cable. JavaSewer Pages Specijica-
tion: Version 1.1. Sun Microsystems, Inc., 901 San Antonio
Road, Palo Alto, CA 94303, USA, December 1999. Available at
http://java.sun.com/products/jsp/.

[131 Sun Microsystems. Enterprise JavaBeans Server-Side Component Archi-
tecture. See h t t p : / / j ava. sun. com/product s/e j b.

[141 Sun Microsystems. JavaBeans Component Architecture Documentation.
See h t t p : / / j a v a . sun. com/products/javabeans/docs.

[151 Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley, 1998.

[I61 S. White and M. Hapner. JDBC2.1 APZ. Sun Microsystems, Inc., October
1999. Available at h t t p : //java. sun. com/products/jdbc/.

http://www.llnl.gov/CASC/SAMRAI
http://www.microsoft
http://java.sun.com/products/jsp

